Trigonometry
Trigonometry desribes the relationships between the sides and angles of triangles.
- $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{a}{c}$
-
$\csc \theta = \frac{\text{hypotenuse}}{\text{opposite}} = \frac{c}{a}$
- $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{b}{c}$
-
$\sec \theta = \frac{\text{hypotenuse}}{\text{adjacent}} = \frac{c}{b}$
- $\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{a}{b}$
- $\cot \theta = \frac{\text{adjacent}}{\text{opposite}} = \frac{b}{a}$
These definitions can be extended to obtuse angles, by changing the side lengths’ signs when they cross the starting point.
Important Angles
On the unit circle, $\sin \theta$ corresponds to $y$ values, and $\cos \theta$ corresponds to $x$ values.
- $\sin \frac{\pi}{6} = \cos \frac{\pi}{3} = \frac{1}{2}$
- $\sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$
- $\sin \frac{\pi}{3} = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$