Logarithms
A logarithm is the inverse of an exponential function. So
\[\log_b x = y \iff b^y=x .\]Log Rules
- $\log_b xy = \log_b x + \log_b y$
- $log_b \frac{x}{y} = \log_b x - \log_b y$
- $\log_b x^a = a \log_b x$
- $b^{\log_b x} = x$
Change of Base formula
$\log_a x = \frac{\log_b x}{\log_b a}$, for $a\neq 1$.